f08 — Least-squares and Eigenvalue Problems (LAPACK) f08quc

NAG C Library Function Document

nag_ztrsen (f08quc)

1 Purpose

nag_ztrsen (f08quc) reorders the Schur factorization of a complex general matrix so that a selected cluster
of eigenvalues appears in the leading elements on the diagonal of the Schur form. The function also
optionally computes the reciprocal condition numbers of the cluster of eigenvalues and/or the invariant
subspace.

2 Specification

void nag_ztrsen (Nag_OrderType order, Nag_JobType job, Nag_ComputeQType compq,
const Boolean select[], Integer n, Complex t[], Integer pdt, Complex ql[],
Integer pdq, Complex w[], Integer *m, double *s, double *sep, NagError *fail)

3 Description

nag_ztrsen (f08quc) reorders the Schur factorization of a complex general matrix A = QT'QY, so that a
selected cluster of eigenvalues appears in the leading diagonal elements of the Schur form.

The reordered Schur form 7' is computed by a unitary similarity transformation: T = ZZTZ. Optionally
the updated matrix) of Schur vectors is computed as Q) = QZ, giving A = QTQH .

Let T = <T61 ?2) where the selected eigenvalues are precisely the eigenvalues of the leading m by
2

m submatrix T';. Let Q be correspondingly partitioned as (Q; @Q,) where Q, consists of the first m
columns of). Then AQ; = Q,T;, and so the m columns of @); form an orthonormal basis for the
invariant subspace corresponding to the selected cluster of eigenvalues.

Optionally the function also computes estimates of the reciprocal condition numbers of the average of the
cluster of eigenvalues and of the invariant subspace.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2 job — Nag JobType Input

On entry: indicates whether condition numbers are required for the cluster of eigenvalues and/or the
invariant subspace, as follows:

if job = Nag_DoNothing, no condition numbers are required;
if job = Nag_EigVals, only the condition number for the cluster of eigenvalues is computed;

if job = Nag_Subspace, only the condition number for the invariant subspace is computed;

[NP3645/7] f08quc.1

f08quc NAG C Library Manual

if job = Nag DoBoth, condition numbers for both the cluster of eigenvalues and the
invariant subspace are computed.

Constraint: job = Nag_DoNothing, Nag_EigVals, Nag_Subspace or Nag_DoBoth.

3: compq — Nag ComputeQType Input
On entry: indicates whether the matrix @) of Schur vectors is to be updated, as follows:
if compq = Nag_UpdateSchur, the matrix () of Schur vectors is updated;
if compq = Nag_NotQ, no Schur vectors are updated.
Constraint: compq = Nag_UpdateSchur or Nag_NotQ.

4: select[dim| — const Boolean Input
Note: the dimension, dim, of the array select must be at least max(1,n).
On entry: specifies the eigenvalues in the selected cluster. To select a complex eigenvalue A,
select[j — 1] must be set TRUE.

5: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

6: t[dim] — Complex Input/Output
Note: the dimension, dim, of the array t must be at least max(1, pdt x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix T is stored in t[(j — 1) x pdt+ ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the n by n upper triangular matrix 7°, as returned by nag_zhseqr (fO08psc).

On exit: t is overwritten by the updated matrix 7.

7: pdt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt > max(1,n).

8: q[dim] — Complex Input/Output

Note: the dimension, dim, of the array q must be at least
max(1, pdq x n) when compq = Nag_UpdateSchur;
1 when compq = Nag_NotQ.

If order = Nag_ColMajor, the (7, j)th element of the matrix @ is stored in q[(j — 1) x pdq + i — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q[(i —1) x pdq +j — 1].

On entry: if compq = Nag_UpdateSchur, q must contain the n by n unitary matrix) of Schur
vectors, as returned by nag_zhseqr (f08psc).

On exit. if compq = Nag_UpdateSchur, q contains the updated matrix of Schur vectors; the first m
rows or columns of q (depending on the value of order) form an orthonormal basis for the specified
invariant subspace.

q is not referenced if compq = Nag NotQ.

9: pdq — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

f08quc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08quc

10:

11:

12:

13:

14:

6

Constraints:

if compq = Nag_UpdateSchur, pdq > max(1,n);

if compq = Nag_NotQ, pdq > 1.
w[dim] — Complex Output
Note: the dimension, dim, of the array w must be at least max(1,n).
On exit: the reordered eigenvalues of 7. The eigenvalues are stored in the same order as on the
diagonal of T
m — Integer * Output
On exit: m, the dimension of the specified invariant subspace, which is the same as the number of
selected eigenvalues (see select); 0 < m < n.
s — double * Output

On exit: if job = Nag EigVals or Nag DoBoth, s is a lower bound on the reciprocal condition
number of the average of the selected cluster of eigenvalues. If m =0 or n, s = 1.

s is not referenced if job = Nag_DoNothing or Nag_Subspace.

sep — double * Output

On exit. if job = Nag_Subspace or Nag_DoBoth, sep is the estimated reciprocal condition number
of the specified invariant subspace. If m =0 or n, sep = ||T|.

sep is not referenced if job = Nag_DoNothing or Nag_EigVals.

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdt = (value).
Constraint: pdt > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

NE_INT 2

On entry, pdt = (value), n = (value).
Constraint: pdt > max(1,n).

NE_ENUM_INT 2

On entry, compq = (value), n = (value), pdq = (value).
Constraint: if compq = Nag_UpdateSchur, pdq > max(1,n);
if compq = Nag_NotQ, pdq > 1.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

[NP3645/7] f08quc.3

f08quc NAG C Library Manual

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix T is similar to a matrix T + E, where
1Ell, = 0T,
and ¢ is the machine precision.

S cannot underestimate the true reciprocal condition number by more than a factor of \/min(m,n —m).

sep may differ from the true value by y/m(n — m). The angle between the computed invariant subspace
Ol All,

sep
The values of the eigenvalues are never changed by the re-ordering.

and the true subspace is

8 Further Comments

The real analogue of this function is nag_dtrsen (f08qgc).

9 Example

To reorder the Schur factorization of the matrix A = QT'Q" such that the eigenvalues stored in elements
t1; and t44 appear as the leading elements on the diagonal of the reordered matrix T', where

—6.0004 — 6.9999: 0.3637 — 0.3656: —0.18804-0.4787¢ 0.8785 — 0.2539:
0.0000 + 0.0000¢ —5.0000 + 2.00607 —0.0307 —0.7217¢ —0.2290 + 0.13133
0.0000 + 0.0000: 0.0000 + 0.0000¢ 7.9982 —0.9964: 0.9357 4 0.5359¢
0.0000 4 0.0000z 0.0000 + 0.0000 0.0000 4 0.0000z 3.0023 — 3.9998:

T:

and

—0.8347 — 0.1364: —0.0628 4 0.38062 0.2765 — 0.0846¢ 0.0633 — 0.2199:

B 0.0664 — 0.29687 0.2365 + 0.5240: —0.5877 — 0.4208¢ 0.0835 4 0.2183¢
@= —0.0362 — 0.3215¢ 0.3143 — 0.5473¢ 0.0576 — 0.57367 0.0057 — 0.4058:
0.0086 4 0.2958: —0.3416 — 0.0757¢ —0.1900 — 0.16007 0.8327 — 0.1868%

The original matrix A is given in nag_zunghr (f08ntc).

9.1 Program Text

/* nag_ztrsen (f08quc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.

*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars x/
Integer i, j, m, n, pdqgq, pdt, select_len, w_len;
Integer exit_status=0;
double s, sep;

08quc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08quc

NagError fail;
Nag_OrderType order;

/* Arrays */

Complex *g=0, *t=0, *w=0;
char sel_char[2];
Boolean #*select=0;

#ifdef NAG_COLUMN_MAJOR
#define T(I,J) t[(J-1)=*pdt
#define Q(I,J) ql(J-1)+*pdg
order = Nag_ColMajor;
#else
#define T(I,J) t[(I-1)=*pdt
#define Q(I,J) ql(I-1)=*pdg
order = Nag_RowMajor;
#endif

+ +
H H
1
2e

+ +
O
1
/e

INIT_FAIL(fail);
Vprintf ("£f08quc Example Program Results\n\n")

/* Skip heading in data file =*/

Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pdgq = n;
pdt = n;
#else
pdgq = n;
pdt = n;
#endif
w_len =n;
select_len = n;

/* Allocate memory */

if (!'(g = NAG_ALLOC(n * n, Complex)) ||
! (w = NAG_ALLOC(w_len, Complex)) ||
! (select = NAG_ALLOC(select_len, Boolean)) ||
1 (t = NAG_ALLOC(n * n, Complex)))

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;
}
/* Read T from data file *x/
for (i = 1; i <= n; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf (" (%1f , %1f) ", &T(i,j).re, &T(i,]J).im);
}
Vscanf ("s*[*\n] ");
for (i = 1; i <= n; ++1)
{
for (jJ = 1; j <= n; ++3)
Vscanf (" (%1f , %1f) ", &Q(i,j).re, &Q(i,]J).im);
}

Vscanf ("%* [
for (i = 0;

{

“\n]
i < n; ++1)
Vscanf (" %1s ", sel_char);
if (*(unsigned char *)sel_char == 'F’)
select[i] = FALSE;
else
select[i] = TRUE;
}
Vscanf (["\n] ");

/* Reorder the Schur factorization T =*/

f08quc(order, Nag_DoBoth, Nag_UpdateSchur, select, n, t, pdt,
q, pdq, w, &m, &s, &sep, &fail);

if (fail.code != NE_NOERROR)

[NP3645/7] 08quc.5

f08quc NAG C Library Manual

{
Vprintf ("Error from f08quc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Print reordered Schur form */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
t, pdt, Nag_ BracketForm, "%7.4f", "Reordered Schur form",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

3

/* Print basis of invariant subspace */

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m, g, pdq,
Nag_BracketForm, "%7.4f", "Basis of invariant subspace",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

¥

/* Print condition number estimates */

Vprintf ("\n Condition number estimate of the selected cluster of"
" eigenvalues = %10.2e\n",1.0/s);

Vprintf ("\n Condition number estimate of the specified invariant"
" subspace = %10.2e\n",1.0/sep);

END

if (g) NAG_FREE(q);

if (t) NAG_FREE(t);

if (w) NAG_FREE (w) ;

if (select) NAG_FREE (select);

return exit_status;

9.2 Program Data

f08quc Example Program Data
4 :Value of N

(-6.0004,-6.9999) (0.3637,-0.3656) (-0.1880, 0.4787) (0.8785,-0.2539)
(0.0000, 0.0000) (-5.0000, 2.0060) (-0.0307,-0.7217) (-0.2290, 0.1313)
(0.0000, 0.0000) (0.0000, 0.0000) (7.9982,-0.9964) (0.9357, 0.5359)
(0.0000, 0.0000) (0.0000, 0.0000) (0.0000, 0.0000) (3.0023,-3.9998)

:End of matrix T
(-0.8347,-0.1364) (-0.0628, 0.3806) (0.2765,-0.0846) (0.0633,-0.2199)
(0.0664,-0.2968) (0.2365, 0.5240) (-0.5877,-0.4208) (0.0835, 0.2183)
(-0.0362,-0.3215) (0.3143,-0.5473) (0.0576,-0.5736) (0.0057,-0.4058)
(0.0086, 0.2958) (-0.3416,-0.0757) (-0.1900,-0.1600) (0.8327,-0.1868)

:End of matrix Q
T F F T :End of SELECT

9.3 Program Results

f08quc Example Program Results
Reordered Schur form

2
((-0.9433, 0.0086)
((3.0023,-3.9998)
(0.0000, 0.0000 (0.0000, 0.0000)

(0.0000, 0.0000) (0.0000, 0.0000)
asis of invariant subspace

3
-0.4839,-0.2426)
0.3028, 0.1519) 1.0421,-0.2338
-5.) 0.6891,-0.1546
0.)

7.9982,-0.9964

1
-6.0004,-6.9999)
0.0000, 0.0000)
) 0000, 2.0060

4

0.1539, 0.4000)

)

)

0000, 0.0000)

W wN R

2 (-0.0177, 0.3036 (0.1275, 0.3006

1 2
1 (0.8458, 0.0000) (0.0488,-0.2073)
))
3 (0.0876, 0.3115) (0.0398,-0.2711)

J08quc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08quc

4 (-0.0562,-0.2905) (0.8792, 0.0000)
Condition number estimate of the selected cluster of eigenvalues = 1.02e+00

Condition number estimate of the specified invariant subspace = 1.82e-01

[NP3645/7] f08quc.7 (last)

	f08quc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	compq
	select
	n
	t
	pdt
	q
	pdq
	w
	m
	s
	sep
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

